
GCC as Optimising Compiler

Ivan Voras

Feb 17, 2004.

Abstract

This paper aims to present and analyse some of the optimisations that
are conducted by the GNU C compiler, in version 3.3.4 (on a i386 FreeBSD
system). This is only an informal and introductory paper and is not meant
to be comprehensive nor complete, only to give insight at things that are
happening “behind the scenes”.

1 Importance of Compiler Optimisations

There was a time when high-level languages were used only in cases when perfor-
mance was not critical – primarily because the compilers produced very unop-
timised and naive machine code. The reason behind it was that the computers
themselves did not have the capacity to run complex programs such as optimis-
ing compilers. Optimising machine code is expensive in both the complexity of
operations and in the memory space required to keep track of data structures
involved in the process, and the produced code was still far from that made by
a skilled assembler programmer. Since then, several things have changed: com-
puters have become faster, and equally more complex, by several orders of mag-
nitude in a very short time, memory became cheap and huge (both as compared
to ones deployed about 20 years ago) and compilers could execute algorithms
that were once deemed unthinkably expensive. As a consequence, really skilled
programmers (both assembler and high-level specialists) have become sort of a
rarity. That condition lead to more research in compiler optimisations, and now
there exists a paradox that the code produced by a compiler is often faster than
the one hand-optimised by a programmer. Today’s programmers don’t have to
be (and often aren’t) as skilled as they used to be, and the responsibility to
generate good code has fallen on to the compiler itself.

Although this author greatly prefers the “Intel” notation of assembler pro-
grammes, since this paper concentrates on the gcc compiler, the assembler out-
put generated by gcc, in “AT&T” form, is used.

1

2 Some of the Techniques of Optimisation

Today’s CPUs are extremely complex. In order to achieve higher and higher
execution speeds, they employ pipelining, branch prediction, out-of-order in-
struction execution, delayed branching etc. Human mind cannot keep track of
all consequences of code execution on such a complex machine, and besides that
- different processor models have different execution optimisations and often
slightly different instruction sets (e.g. Intel SSE vs AMD 3DNow!).

Using such model-specific processor instructions is the next-to-simplest form
of optimisation (the simplest form is padding memory structures and code to
start on predetermined memory boundaries that are faster to access). The
problem with such code is that it doesn’t run on all common CPUs, even if
they are nominally of the same family (e.g. Pentium 2 vs Pentium 3). Some
operating environments are lucky because most of the applications are provided
in the form of the source code (most Unix-like environments), and by compil-
ing for a specific processor model the user can be sure that the application is
using all the available processor features and runs at its optimum. Other en-
vironments, where distribution of already-compiled applications is much more
common need “blended code”, which contains several execution paths that are
chosen depending on the CPU features (e.g. a performance-critical function
could be compiled (and included in the executable) several times: once contain-
ing only 80386 code, once with MMX instructions, once optimised for Pentium
IV with SSE2). Blended code is an important feature of compilers targeted for
MS Windows and other commercial environments. That’s about it for using
model-specific instructions – they normally are faster, and if they can be used,
the improvements can be great, but they are not a panacea - only using the
extended instruction set instead of the usual one does not guarantee optimal,
or even faster execution.

Next methods are ones that involve redistribution and reordering of the
instructions to take advantage of some specific processor feature, such as the
length of its pipeline, how it predicts the execution, the size its caches, etc.

Much more interesting are the methods that eliminate code redundancies in
the code made by the programmer, such as double-assigning and algorithmical
redundancies like “empty” loops. These are actually the most difficult optimisa-
tions, because they have to track the behaviour of the program and its internal
state.

Compilers employing all these optimisations can significantly alter the struc-
ture of the program, making the end-result machine code seemingly unrelated to
the original high-level source. For example, order of code blocks can be changed,
loops can be combined or expanded, some code can be missing or duplicated in
places that have little or no apparent connection. It all depends on how well
the compiler “understands” the code, and how well it can adapt it to suit a
particular processor.

2

3 GCC Examples

The -S switch of gcc is used to generate assembler-source output instead of
executable machine code. Such code is presented and examined here. Here is
the C source that is used to generate code:

int constant() {
return 3;

}

void main() {
int a = 2;

a += constant();

while (!a) {
puts ("first");

}

do {
puts ("second");

} while (!a);
}

This is a simple program, with several obvious chances for optimisation. Let’s
see how the compiler copes with the code.

3.1 No optimisations (-O0)

The compiler is called as “gcc33 -o test 0.S -O0 -S test.c”.

.file "test1.c"

.text
.globl constant

.type constant, @function

This is the preamble. It servers to keep some information internal to the com-
piler.

constant:
pushl %ebp
movl %esp, %ebp
movl $3, %eax
leave
ret
.size constant, .-constant

3

Here is the compiled code of the function constant(). The function is quite
literally translated into machine code, starting with setting up the stack, moving
the literal constant“3” into the return-register (%eax), cleaning up the stack and
returning from the function.

.section .rodata
.LC0:

.string "first"
.LC1:

.string "second"

This part is the storage for the string constants used.

.text
.globl main

.type main, @function
main:

The main() function starts here.

pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
movl $2, -4(%ebp)

The above code is generated by the “int a=2;” line. In effect, this reserves a
variable on the stack (located at -4(%ebp)), and writes integer “2” to it (the last
line).

call constant
movl %eax, %edx
leal -4(%ebp), %eax
addl %edx, (%eax)

This code calls the function, and adds it’s result (located in %eax, then trans-
fered to the %edx) to the variable.

.L3:
cmpl $0, -4(%ebp)
je .L5
jmp .L4

The variable is tested. If it is equal to zero (meaning it’s evaluated as false),
the execution jumps to the label “L5”. Else, the execution jumps to L4. This is
bad code, because a code jump is unavoidable, even if it is only one instruction
away (jumps are generally the slowest instructions available).

4

.L5:
subl $12, %esp
pushl $.LC0
call puts
addl $16, %esp
jmp .L3

The address of the LC0 (literal-constant 0) is pushed to the stack for the puts()
function and the function is called. A jump is then made to the beginning of
the loop (the testing of the loop condition).

.L4:
nop

I really don’t know why the no-operation code is inserted here. Maybe its
purpose is to align the following code on some boundary. More likely, it is a
residual of some internal placeholder.

.L6:
subl $12, %esp
pushl $.LC1
call puts
addl $16, %esp
cmpl $0, -4(%ebp)
je .L6

This loop (do...while) is visibly more compact than the above one. Such be-
haviour has resulted in “anecdotal advice” between programmers to use this
form of the loop instead of “while...{}” in order to achieve performance gains.
However, see the results of more advanced optimisations.

leave
ret

Function ends.

.size main, .-main

.ident "GCC: (GNU) 3.3.4 20040216 (prere-
lease) [FreeBSD]"

Standard epilogue.

3.2 Simple optimisations (-O1, or just -O)

The compiler is called as “gcc33 -o test 1.S -O1 -S test.c”.

5

.file "test1.c"

.text
.globl constant

.type constant, @function
constant:

pushl %ebp
movl %esp, %ebp
movl $3, %eax
leave
ret
.size constant, .-constant
.section .rodata.str1.1,"aMS",@progbits,1

.LC0:
.string "first"

.LC1:
.string "second"
.text

.globl main
.type main, @function

This part is virtually identical to the one without optimisations. The only
difference is use of additional linker flags in the .section directive above.

main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4, %esp
andl $-16, %esp
call constant
movl %eax, %ebx
addl $2, %ebx
jne .L7

Here we see that the initialisation of the variable“a”, the call to the constant()
function, and the initial testing of the loop condition are combined. The order of
operations is no longer “initialise a; call function; add its result to the variable”,
rather it is all mixed together, and what’s more, the variable isn’t even stored in
memory! During the whole execution of the main() function the variable exists
in the %ebx register, and that is a big speedup.

The last line of the above code is a conditional jump (jump-if-not-equal),
and it depends on the result of the previous instruction (addl), almost like a
side-effect. The compiler now “understands” the effects various commands have
on each other and doesn’t just translate blocks of code into other blocks of code.
Also, there is no obligatory jump here: if the condition is not met, the execution
naturaly flows to the next instruction.

6

.L6:
subl $12, %esp
pushl $.LC0
call puts
addl $16, %esp
testl %ebx, %ebx
je .L6

Although the original form of the loop is “while(condition) do {...}”, here we see
that the condition is tested at the end of the loop. This is because of 2 reasons:
first, because the condition at the beginning of the loop is tested“implicitly”, and
second, because branch-predicting logic in the processor usually “predicts” that
the conditional forward-jumps are not taken and the conditional back-jumps are
taken (thus optimising the case where the conditional jumps form loops).

.L7:
subl $12, %esp
pushl $.LC1
call puts
addl $16, %esp
testl %ebx, %ebx
je .L7

The second loop is very similar to the unoptimised case, because condition
testing must appear at the end of the loop, and the loop code block must be
executed at least once. The only difference is the choice of condition-testing
instruction, which relies more on the side-effects of instructions. Notice that
there are only 2 jump-labels in the above code, which is a vast improvement
over the 4 that exist in the unoptimised case.

movl -4(%ebp), %ebx
leave
ret

The compiler loads the variable into the register “just in case” it is needed. The
movl instruction has no apparent purpose in the above code and could be left
out by further optimisations.

.size main, .-main

.ident "GCC: (GNU) 3.3.4 20040216 (prere-
lease) [FreeBSD]"

The epilogue is standard.

3.3 More optimisations (-O2)

The compiler is called as “gcc -o test 2.S -O2 -S test.c”.

7

.file "test1.c"

.text

.p2align 2, ,3

Here, for the first time we see that padding is used to squeeze performance
from the code. As modern CPUs access aligned memory data much faster
than unaligned, this can give a significant performance boost in loops. The
.p2align directive above states that code should be aligned on addresses which
are multiple of 4 bytes (=22), but only if it doesn’t mean wasting more than 3
bytes of space.

.globl constant
.type constant, @function

constant:
pushl %ebp
movl %esp, %ebp
movl $3, %eax
leave
ret
.size constant, .-constant
.section .rodata.str1.1,"aMS",@progbits,1

.LC1:
.string "second"

.LC0:
.string "first"
.text
.p2align 2, ,3

.globl main
.type main, @function

This code is same as before, except for the alignment directive.

main:
pushl %ebp
movl %esp, %ebp
pushl %ebx
pushl %eax
andl $-16, %esp
call constant
movl %eax, %ebx
addl $2, %ebx
je .L6
.p2align 2, ,3

This code is same as before, except for the alignment directive.

.L7:

8

subl $12, %esp
pushl $.LC1
call puts
addl $16, %esp
testl %ebx, %ebx
je .L7
movl -4(%ebp), %ebx
leave
ret
.p2align 2, ,3

Now we see something strange - the order of the loops has changed! The compiler
has, for some reason, changed the order in which the two loops appear in the
generated code, although the execution path remains the same.

.L6:
subl $12, %esp
pushl $.LC0
call puts
addl $16, %esp
testl %ebx, %ebx
je .L6
jmp .L7

Here is the possible reason for this change of order: a back-jump to L7 is made,
and thus the code for the loop might well be cached in memory.

.size main, .-main

.ident "GCC: (GNU) 3.3.4 20040216 (prere-
lease) [FreeBSD]"

Standard epilogue.

3.4 Maximum optimisations (-O3)

The compiler is called as “gcc -o test 2.S -O3 -S test.c”.

.file "test1.c"

.section .rodata.str1.1,"aMS",@progbits,1
.LC1:

.string "second"

.text

Now we see some real effort from the compiler! The constant function was
recognised as such, but was for some reason kept in the code below “just in
case” (probably because some other module could have called it). Also, a literal
constant is missing, for reasons described below.

9

.p2align 2, ,3
.globl main

.type main, @function
main:

pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
subl $12, %esp
pushl $.LC1
call puts
addl $16, %esp
leave
ret

Wow! The compiler saw right through us! There is no mention of the original
loops, only one single call to the puts() function, which is all that the original
code really does. To come to this conclusion, the compiler must have figured
out:

• That the function constant() is really a constant - returning the same
value every time. Since it uses no parameters and no variables, this one
was easy to figure out.

• The variable “a” is always non-zero. This conclusion must have been made
after the first one. When the constant() function was folded into a
constant, all the calculations and condition-checking could have been made
at compile-time rather than at run-time, and so this conclusion follows.

.size main, .-main

.p2align 2, ,3
.globl constant

.type constant, @function
constant:

pushl %ebp
movl %esp, %ebp
movl $3, %eax
leave
ret
.size constant, .-constant
.ident "GCC: (GNU) 3.3.4 20040216 (prere-

lease) [FreeBSD]"

The ending of the main() function, the actual constant() function, and the
epilogue are unchanged from the previous cases.

10

3.5 Maximum optimisations (-O3) with CPU-specific op-
timisations (-march=pentium3)

The compiler is called as“gcc -o test 2.S -O3 -march=pentium3 -S test.c”.

.file "test1.c"

.section .rodata.str1.1,"aMS",@progbits,1
.LC1:

.string "second"

.text

.p2align 4, ,15

The first big difference is alignment of the code, which has changed to 16 bytes.
Obviously, Pentium 3 processor are even faster when fetching from memory
addresses that lie on the multiples of 16 bytes.

.globl main
.type main, @function

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $.LC1, (%esp)
call puts
movl %ebp, %esp
popl %ebp
ret

Although the“payload”of the code itself hasn’t changed much, the manipulation
of the stack has changed significantly. The push and pop instructions are used
much less often and RISC-like accessing of the stack via %esp is used instead.
Also, the leave instruction is RISC-ified into 2 instructions.

.size main, .-main

.p2align 4, ,15
.globl constant

.type constant, @function
constant:

pushl %ebp
movl $3, %eax
movl %esp, %ebp
popl %ebp
ret
.size constant, .-constant
.ident "GCC: (GNU) 3.3.4 20040216 (prere-

lease) [FreeBSD]"

11

The transformations in the above code snippet are similar to those in the pre-
ceding one: alignment has changed, and leave instruction is resolved into 2
instructions.

4 Conclusion

Having the compiler do low-level optimisations is very handy, and today’s com-
pilers have become very smart at it. However, there are some caveats (“there’s
no free lunch”):

• Turning on optimisations significantly increases compilation times. Using
-O2 lengthens the compilation about two times as compared to -O1, and
with -O3 the compilation time sky-rockets.

• Not all compilers perform the optimisations in the same way, and some
compilers are much more successful at it then others. For example, Intel’s
C compiler (icc) produces code that is much more optimised than the
one gcc produces. A good algorithm is always much faster than a highly-
optimised bad algorithm.

• As seen above, a large portion of optimisations can only be performed
inside a single module. Other modules linked with the above module
cannot take advantage of the knowledge that the call to the constant()
function can be replaced by a numerical constant.

12

